Spectral signature of back reaction in correlated electron dynamics in intense electromagnetic fields
نویسندگان
چکیده
منابع مشابه
Theory of Gas Ionization by Intense Electromagnetic Fields
The distribution function of the electrons produced in the interaction between an intense electromagnetic wave and a neutral gas is derived and is shown to be nonequilibrium and anisotropic. By assuming that the time scale of gas ionization is much greater than the field period, it is shown that the electron distribution function formed in microwave and optical discharges has sharp anisotropy a...
متن کاملPropagation and Interaction of Electrostatic and Electromagnetic Waves in Two Stream Free Electron Laser in the Presence of Self-Fields
A relativistic theory for two-stream free electron laser (FEL) with a one-dimensional helical wiggler and ion-channel guiding in the presence of self-fields are presented. A dispersion relation (DR) which includes coupling between the electromagnetic and the electrostatic waves is derived from a fluid model, with all of the relativistic terms related to the transverse wiggler motion. This DR is...
متن کاملSpectral evolution of non-thermal electron distributions in intense radiation fields
Context. Models of many astrophysical gamma-ray sources assume they contain a homogeneous distribution of electrons that are injected as a power-law in energy and evolve by interacting with radiation fields, magnetic fields and particles in the source and by escaping. This problem is particularly complicated if the radiation fields have higher energy density than the magnetic field and are suff...
متن کاملPhotoionization of isooctane in intense laser fields. II. The effect of irradiance on electron dynamics.
Thin path length jets (60 microm) of liquid isooctane have been photoionized with 36-70 fs pulses of 3.1 eV photons. Decay of the transient absorption (TA) at 1200 nm (assigned as predominantly due to absorption by the electron) has been examined over a time interval from 0.5 to 40 ps and over an irradiance range from 7 to 407 TW/cm(2). This range of irradiance covers a region that encompasses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Research
سال: 2020
ISSN: 2643-1564
DOI: 10.1103/physrevresearch.2.033047